
LOW-POWER PARALLEL TREE ARCHITECTURE FOR FULL SEARCH
BLOCK-MATCHING MOTION ESTIMATION

Siou-Shen Lin, Po-Chih Tseng, and Liang-Gee Chen

DSP/IC Design Lab, Graduate Institute of Electronics Engineering,
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

E-Mail:{sslin, pctseng, lgchen}@video.ee.ntu.edu.tw

ABSTRACT

In this paper, a novel low-power parallel tree architecture is pro-
posed for full search block-matching motion estimation. The par-
allel tree architecture exploits the spatial data correlations between
parallel candidate block searches for data sharing, which effec-
tively eliminates huge amount of data access bandwidth while con-
sumes fewer hardware resources compared with array-based archi-
tectures. Combining with adaptive parallel partial distortion elim-
ination algorithm, the required average clock cycle count for each
macroblock search can be greatly reduced to below 50% to achieve
low-power operation. Besides, this architecture can also eliminate
redundant computation without pipeline latency and excess power
consumption caused by register shifting and redundant memory
accessing in array-based architectures. The proposed architecture
is suitable for high-end real-time portable video encoding system,
which desires high-quality video but low-power consumption.

1. INTRODUCTION

Motion estimation is the fundamental technique of video compres-
sion, which effectively reduces the temporal redundancy among
video sequences. In order to achieve better video quality, full
search block-matching algorithm (FSBMA) is usually adopted for
motion estimation. The FSBMA determines the motion vector by
identifying the macroblock with minimum distortion from a set of
all possible candidate blocks in the search window, and therefore
enables to achieve the optimal search result. However, it takes
huge amount of computation to perform full search of all possi-
ble candidate blocks. Due to the huge amount of computation,
motion estimation is the most power demanding kernel in a video
encoding system, which usually consumes more than 50% power
consumption of whole system [1].

For the portable system, lowering power consumption is one
of the most critical design issues. In order to reduce computa-
tional complexity and thus lower power consumption, many fast
algorithms were proposed in the literature. One category of fast
algorithms proposed to effectively reduce the computation amount
by fewer search positions or fewer matching samples, but it could
only achieve sub-optimal search result. Another category proposed
to reduce the computation amount without sacrificing the quality
of motion estimation, which is referred as fast full search, such
as the partial distortion elimination (PDE) [2] [3]. The principle

This work was supported in part by MOE Program for Promoting Aca-
demic Excellence of Universities under the grant number 89E-FA06-2-4-8,
in part by National Science Council, Republic of China, under the grant
number 91-2215-E-002-035, and in part by MediaTek Inc.

of PDE is to stop the accumulation of sum of absolute difference
(SAD) to reduce redundant computation when the temporal accu-
mulated SAD value is larger than recent minimum one.

Due to the regular data flow of FSBMA motion estimation,
various array-based [4] [5] [6] [7] [8] [9]and tree-based [10] ar-
chitectures were proposed. However, most of them did not exploit
fast full search algorithms to further reduce the redundant com-
putation. Although some array-based architectures [11] [12] were
proposed to exploit PDE and could achieve approximate 50% av-
erage skipping ratios, there were several problems in these archi-
tectures, such as pipeline latency and excess power consumption
caused by register shifting and redundant memory accessing.

In this paper, a novel parallel tree architecture is proposed
for FSBMA motion estimation. The parallel tree architecture ex-
ploits the spatial data correlations between parallel candidate block
searches for data sharing, which effectively eliminates huge amount
of data access bandwidth while consumes fewer hardware resources
compared with array-based architectures. Combining with adap-
tive parallel PDE algorithm, the required average clock cycle count
for each macroblock search can be greatly reduced to below 50%
without problems found in array-based architectures. The organi-
zation of this paper is as follows. Section 2 presents the proposed
parallel tree architecture, and section 3 gives the hardware imple-
mentation results. In section 4, the comparison results with previ-
ous arts are listed, and finally, a brief conclusion is given in section
5.

2. PROPOSED ARCHITECTURE

2.1. FSBMA Motion Estimation

The FSBMA motion estimation is a four nested-loops calculation
in the macroblock level, where p denotes the search range and N
denotes the block size.

Loop1 : For j = -p to p - 1
Loop2 : For i = -p to p - 1
Loop3 : For l = 0 to N- 1
Loop4 : For k = 0 to N-1

SAD(i,j)=SAD(i,j) + |C(k,l) - R(k+i,l+j)|
End (Loop4)

End (Loop3)
End (Loop2)

End (Loop1)

These four nested-loops are generally decomposed with differ-
ent methods to derive various architectures. Most array-based and

AD

+

AD AD AD AD AD AD AD

+ + +

+ +

+

ACC
reload

+

AD

+

AD AD AD AD AD AD AD

+ + +

+ +

+

current block
search window

Fig. 1. A 1/16-cut subtree architecture (16×1PE)

16x1 PE0 16x1 PE1 16x1 PE2 16x1 PE3

Decision Unit

19 pixel search window data

16 pixel
current
block
data

Fig. 2. Four 16×1PEs organized in parallel form

tree-based architectures process loop3 or loop4 as well in parallel
while some process loop1 or loop2 as well in parallel. Regard-
ing to fast full search, [11] and [12] proposed to exploit PDE in
loop3 or loop4 as well. When the accumulated SAD is lager than
recent minimum one, the processing elements (PEs) are disabled
to avoid redundant computation. However, there were few discus-
sions about the exploitation of PDE in loop1 or loop2 as well. In
proposed parallel tree architecture, it exploits PDE both in loop4
and loop2.

2.2. Parallel tree architecture

The proposed parallel tree architecture is based on the tree archi-
tecture [10]. As shown in Fig. 1, a 1/16-cut subtree is presented
and denoted as ”16×1PE”. Each AD in the 16×1PE calculates the
absolute difference value between the current block data and the
candidate block data in search window, and the following adder
tree and accumulator (ACC) accumulate these 16 absolute differ-
ence values. A SAD value is generated in the ACC every 16 clock
cycles for one candidate block search. In other words, the loop4
are processed in parallel. By exploiting PDE, the clock cycles for
each candidate block search can be reduced further.

In proposed parallel tree architecture, the loop2 is also pro-
cessed in parallel with PDE. As shown in Fig. 2, the 16×1PE
can be organized in parallel form, and the number of 16×1PE is
scalable according to target system specification. In the following,

16x1 PE0 16x1 PE1 16x1 PE2 16x1 PE3

minmin

min

comp

R

skip

recent min.
SAD

Fig. 3. Minimum comparing tree in decision unit

(a) (b)

Fig. 4. (a) Four parallel predicted positions (b) The modified spiral
scanning order for four candidate block searches

four 16×1PEs in parallel is taken for example. As shown in Fig.
2, 19 pixels of the search window data and 16 pixels of the current
block data are broadcasted to the four 16×1PEs. Each of the four
16×1PEs receives the corresponding 16 pixels of the broadcasted
19 pixels as its input data. For example, pixel 1 to pixel 16 are
sent to the 16×1PE0, pixel 2 to pixel 17 are sent to the 16×1PE1,
and so on. That is to say, the four candidate block searches are
computed in parallel, and the search window data are shared hori-
zontally by the four 16×1PEs. Besides, the four accumulated SAD
values for four candidate block searches are delivered to the deci-
sion unit, which is a minimum comparing tree as shown in Fig.
3. The minimum comparing tree decides the smallest SAD value
of the four accumulated SAD values, and the comp compares this
smallest SAD value with recent minimum one stored in the register
R. If this smallest SAD value is larger than recent minimum one,
the SAD value in R will remain the same and the computation for
the four candidate block searches will be skipped. Without PDE,
it takes 4096 (32×32 / 4×16) clock cycles to calculate a 16×16
block for search range from -16 to +15. The clock cycles can be
further reduced by exploiting PDE.

2.3. Low-power operation by exploiting PDE

The skipping ratio of PDE is mainly based on two fundamentals:
the initial SAD value and the scanning order. From the result in
[13], it was shown that better skipping ratio can be obtained by
getting the initial SAD value from the predicted position and by
scanning in spiral order. The predicted position is estimated by the
median of motion vectors of three neighbor blocks.

In order to exploit PDE in proposed architecture, the predicted
position and the spiral scanning order are required to be slightly
modified. As shown in Fig. 4(a), the predicted position is (5,-4).
Since four candidate blocks are computed in parallel, the positions
(4,-4), (6,-4), and (7,-4) are computed as well. In other words,
if the predicted position is (px,py),then (px%4,py), (px%4+1,py),
(px%4+2,py), and (px%4+3,py) are all computed in parallel. This
parallel predicted positions scheme not only fully utilizes the par-
allel tree architecture, but also enables to get a better initial SAD
value for PDE. After getting initial SAD value from parallel pre-
dicted positions, the candidate blocks are scanned in a modified
spiral order as shown in Fig. 4(b).

Since the number of 16×1PEs is scalable, skipping ratios of
PDE are simulated for one 16×1PE, four 16×1PEs, and sixteen
16×1PEs. According to the simulation results by hardware C, it
can be shown that the skipping ratios of PDE in parallel form are
still attractive because of the spatial correlations between parallel
candidate blocks. The skipping ratios are 71.01%, 67.75% and
64.05% in average for the parallelism one, four and sixteen, re-

Table 1. Comparison results between different parallelisms and
test sequences. For CIF format, block size of 16×16, search range
from -16 to +15.

parallelism

sequence 1 4 16

coastguard 68.04% 64.95% 63.47%

foreman 66.82% 62.54% 57.21%

mobile 70.02% 66.39% 63.25%

stefan 62.67% 59.21% 54.92%

table 69.89% 66.25% 62.54%

wether 88.64% 87.13% 82.91%

avg. 71.01% 67.75% 64.05%

avg. cycle / MB 4750 1321 368

cycle w.o. PDE /MB 16384 4096 1024

 I/O bits 256 280 376

avg. bandwidth 1216000 369880 138368

avg. bandwidth w.o. PDE 4194304 1146880 385024

Address Generator / Control

Search Window
RAM Buffer

Current Block
RAM Buffer

Parallel Tree

 Decision Unit

RAM Mask

skip

input

Motion
Vectors

Fig. 5. Block diagram of proposed motion estimation engine

spectively. These comparison results are listed in Table 1. Taking
the computation cycles into account, although the skipping ratio
of parallelism one is the highest, the average cycles per block are
also the highest due to the lowest parallelism. Besides, since the
skipping ratio depends on the characteristics of test sequence, the
computation cycles of the worst case, namely the cycles without
PDE, is also listed in Table 1 as the reference. Moreover, consider
the memory access bandwidth per block in depth. The search win-
dow data memory I/O are 16 pixels, 19 pixels, and 31 pixels for
the parallelism one, four, and sixteen respectively. Assume the av-
erage memory access bandwidth of the search window data and
the current block data to be the product of the average cycles and
the I/O bit-width, then the average memory access bandwidth for
parallelism one would be the highest one. It can be shown in Table
1 that the memory access bandwidth becomes lower as parallelism
higher.

3. HARDWARE IMPLEMENTATION

As shown in Fig. 5, there are six modules in proposed motion esti-
mation engine. The address generator controls two RAM buffers.
Current block RAM buffers and search window RAM buffers re-
ceive data from the system to reduce the access of external main
memory, and level C data reuse scheme [14] is adopted for search
window data updating. The search window data are multiplexed by

Table 2. Key features of implementation result
Technology TSMC 0.25 um CMOS 1P5M Process

Parallelism 4 16

Gate counts (K) 25 75

Frequency (MHz) 50 20

Voltage (V) 2.5 2.5

On chip RAM (Kbits) 20.48 20.48

Power (mW) 99.11 46.52

Power w.o. PDE (mW) 254.65 112.29

the RAM mask to the parallel tree. The SAD values are accumu-
lated in the parallel tree, and the skip signal and the best-matched
motion vector are sent out by the decision unit. During the skipped
cycles, the parallel tree, the RAM buffers, and the decision unit are
disabled using the technique of clock gating to achieve low-power
consumption.

Table 2 lists the gate-level implementation results under dif-
ferent parallelism for CIF 30fps, block size of 16×16, and search
range from -16 to +15. The average power consumptions are 99.11
mW and 46.52 mW for parallelism four and parallelism sixteen re-
spectively, estimated by Synopsys Power Compiler under TSMC
0.25um CMOS 1P5M process.

4. COMPARISON

There are several advantages in proposed parallel tree architecture
compared with previous architectures which also exploit PDE. In
[11], a 1-D array-based architecture was proposed. The data flow
is regular due to the pipeline operation. For this reason, the scan-
ning order is not in spiral order, good initial SAD value from the
predicted position could not be obtained, the unnecessary memory
accessing could not be eliminated, and the skipping ratio is not as
good as proposed ones. There are 15 shift registers in the 1-D ar-
ray. Although redundant computation is eliminated in the PEs, the
data in the shift registers are still shifted and results in unavoidable
power consumption. As shown in Table 3, it needs 285.88MHz
and is not suitable for high-end real-time applications. In [12], a
2-D array-based architecture was presented using a large amount
of shift registers. The data flow is also regular due to the pipeline
operation, and thus, the problems in this architecture are similar to
[11]. There are 691 shift registers which would result in a large
amount of power consumption. According to the simulation re-
sult of Synopsys Power Compiler under TSMC 0.25um process at
25MHz, these 691 8-bit shift registers consume 180.07mW power
consumption and 42K logic gate counts. Besides, when compared
with conventional architectures without PDE, the superiority of the
parallel tree architecture is more obvious as in Table 3. There are
fewer PEs in the parallel tree architecture but the performance is
still comparable to others.

To quantify the relationship between the PE number and the
computation cycles, the product P of PE number and cycles is
used. If the number of PE increases, then the cycles would de-
crease. For the architectures with 100% utilization, the product
should be a fixed value which equals to 262144, such as [4], [7]
[8] [9], and [10]. Normalizing each product with P100%, the nor-
malized product NP can be estimated. Assume that the normalized
efficiency ratio NR be the inverse of the NP.

NR = P100%/P

Table 3. The comparison results between various architectures for CIF 30fps, block size of 16×16, search range from -16 to +15

Architecture Description #PE cycles / MB
SW

 I/O bits
Freq. MHz PDE

avg. cycles
after PDE

avg. skip
ratio %

good
initial value

spiral
scanning

skip RAM
accessing

unavoidable
data shifting

NR

[4] Yang 1-D semi-systolic 32 8192 24 97.32 N 8192 N N N N Y 1.000

[5] AB1 1-D systolic 16 24064 256 285.88 N 24064 N N N N Y 0.681

[5] AB2 2-D systolic 256 1504 128 17.87 N 1504 N N N N Y 0.681

[6] Hsieh 2-D systolic 256 2209 8 26.24 N 2209 N N N N Y 0.464

[7] Yeo 2-D semi-systolic 1024 256 24 3.04 N 256 N N N N Y 1.000

[8] Lai 1-D semi-systolic 1024 256 24 3.04 N 256 N N N N Y 1.000

[9] SA 2-D systolic 256 1024 16 12.17 N 1024 N N N N Y 1.000

[9] SSA 2-D semi-systolic 256 1024 16 12.17 N 1024 N N N N Y 1.000

[10] Tree tree 256 1024 2048 12.17 N 1024 N N N N N 1.000

[11] Sousa 1-D systolic 16 24064 8 285.88 Y 24064 50.00 N N N Y 0.681

[12] DO 2-D systolic 256 2209 8 26.24 Y 2209 44.60 N N N Y 0.464

ours : 4 parallel tree 64 4096 152 48.66 Y 1321 67.75 Y Y Y N 3.101

ours : 16 parallel tree 256 1024 248 12.17 Y 368 64.05 Y Y Y N 2.783

The NR represents the efficiency ratio compared with the ar-
chitectures with 100% utilization under the same number of PE. It
can be shown in Table 3 that the normalized efficiency ratios NR
of the parallel tree architecture are the highest ones compared with
others.

5. CONCLUSION

The parallel tree architecture exploits the spatial correlations be-
tween parallel candidate block searches and performs PDE to elim-
inate redundant computation for low-power operation. Horizontal
data sharing effectively eliminates excess memory access band-
width while consumes fewer hardware resources. The parallel
tree architecture realizes high skipping ratio at low latency and
low working frequency compared with conventional array-based
and tree-based architectures. When the parallelism is sixteen, the
power consumption estimated by the Synopsys Power Compiler
is 46.52mW at 20MHz under TSMC 0.25um CMOS 1P5M pro-
cess with 75K logic gate counts. Therefore, the parallel tree archi-
tecture enables to achieve high-quality and low-power full search
motion estimation, which is the essential component for high-end
real-time portable video encoding system.

6. REFERENCES

[1] K. Guttag, R. J. Gove, and J. R. Van Aken, “A single chip
multiprocessor for multimedia: The mvp,” IEEE Computer
Graphics and Applications, vol. 12, no. 6, pp. 53–64, Nov.
1992.

[2] S. Eckart and C. Fogg, ISO/IEC MPEG-2 Software Video
Codec, SPIE Digital Video Compression: Algorithms and
Technologies, 1995.

[3] J. N. Kim and T. S. Choi, “A fast motion estimation for
software based real-time video coding,” IEEE Transactions
on Consumer Electronics, vol. 45, no. 2, pp. 417–426, May
1999.

[4] K. M. Yang, M. T. Sun, and L. Wu, “A family of vlsi
designs for the motion compensation block matching algo-
rithm,” IEEE Transactions on Circuits and Systems, vol. 36,
no. 10, pp. 1317–1325, Oct. 1989.

[5] T. Komarek and P. Pirsch, “Array architectures for block
matching algorithms,” IEEE Transactions on Circuits and
Systems, vol. 36, no. 2, pp. 1301–1308, Oct. 1989.

[6] C. H. Hsieh and T. P. Lin, “Vlsi architectures for block-
matching motion estimation algorithms,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 2, no. 2,
pp. 169–175, June 1992.

[7] H. Yeo and Y. H Hu, “A novel modular systolic array ar-
chitecture for full-search block matching motion estimation,”
IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 5, no. 5, pp. 407–416, Oct. 1995.

[8] Y. K. Lai and L. G Chen, “A data-interlacing architec-
ture with two-dimentional data-reuse for full-search block-
matching algorithm,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 8, no. 2, pp. 124–127,
Apr. 1998.

[9] Y. H. Yeh and C. Y. Lee, “Cost-effective vlsi architectures
and buffer size optimization for full-search block matching
algorithms,” IEEE Transactions on VLSI Systems, vol. 7, no.
3, pp. 345–358, Sept. 1999.

[10] Y. S. Jehng, L. G. Chen, and T. D. Chiueh, “An efficient
and simple vlsi tree architecture for motion estimation algo-
rithms,” IEEE Transactions on Signal Processing, vol. 41,
no. 2, pp. 889–900, Feb. 1993.

[11] L. Sousa and M. Roma, “Low-power array architectures for
motion estimation,” in IEEE Workshop on Multimedia Signal
Processing, 1999.

[12] V. L. Do and K. Y. Yun, “A low-power architecture for full-
search block-matching motion estimation,” IEEE Transac-
tions on Circuit and System Video Technology, vol. 8, no. 4,
pp. 393–398, Aug. 1998.

[13] W. M. Chao, C. W. Hsu, Y. C. Chang, and L. G. Chen, “A
novel hybrid motion estimator supporting diamond search
and fast full ssearch,” in IEEE International Symposium on
Circuits and Systems, 2002.

[14] J. C. Tuan, T. S. Chang, and C. W. Jen, “On the data reuse and
memory bandwidth analysis for full-search block-matching
vlsi architecture,” IEEE Transactions on Circuit and System
Video Technology, vol. 12, no. 1, pp. 61–72, Jan. 2002.

	footer1:

